GABAergic neurons in the rat hippocampal formation: ultrastructure and synaptic relationships with catecholaminergic terminals.

نویسندگان

  • T A Milner
  • C E Bacon
چکیده

Numerous studies indicate that gamma-aminobutyric acid (GABA) can either hyperpolarize or depolarize hippocampal pyramidal and granule cells. While the inhibitory action of GABA may occur directly on these cells, the excitatory action may be mediated by interactions of GABAergic neurons with each other or with catecholaminergic afferents. We sought to examine the cellular basis for these interactions and their relative frequency. Thus, the ultrastructural morphology of GABAergic neurons and their relation to terminals exhibiting immunoreactivity for the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH) were examined in the rat hippocampal formation using combined immunoautoradiographic and peroxidase-antiperoxidase labeling methods. By light microscopy, GABAergic perikarya and processes codistributed most noticeably with TH-containing processes in the hilus of the dentate gyrus (DG) and in strata lucidum, radiatum, and lacunosum-moleculare of the CA3 region of the hippocampus. Thus, these regions were examined further by electron microscopy. In the ultrastructural analysis, GABA-like immunoreactivity (GABA-LI) was detected in neuronal perikarya, dendrites, axons, and axon terminals. The GABA-containing perikarya were large, ovoid (20-40 microns in diameter), and contained abundant cytoplasm and an indented nucleus with one nucleolus. Synaptic junctions on the perikarya and dendrites with GABA-LI were both symmetric and asymmetric. Approximately equal numbers of TH-labeled terminals (19% of 133 in DG; 39% of 26 in CA3) and GABA-containing terminals (19% DG, 15% CA3) formed synapses with GABA-labeled perikarya. The remainder of the presynaptic terminals (62% DG, 46% CA3) were unlabeled, i.e., contained unidentified transmitters. Terminals with GABA-LI (0.5-1.6 microns) contained numerous small clear vesicles and from 0 to 2 large dense-core vesicles. The types of associations formed by terminals with GABA-LI were remarkably similar in the DG and hippocampus proper despite differences in intrinsic cell type and function. Terminals with GABA-LI formed associations with unlabeled perikarya and dendrites (24% of 151 in DG, 25% of 75 in CA3) and synapses with GABA-containing perikarya and dendrites (18% DG, 5% CA3). Additionally, GABAergic terminals converged upon the same perikarya or dendrite as a TH-containing terminal (15% DG, 21% CA3) and were in direct apposition to TH-labeled terminals (19% DG, 20% CA3). The remaining GABAergic terminals (24% DG, 28% CA3) were without any apparent synaptic relations. In both the DG and CA3, the junctions formed by GABAergic terminals were symmetric. Terminals showing colocalization of GABA-LI and TH-I were also detected although rarely.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphine Consumption During Lactation Impairs Short-Term Neuronal Plasticity in Rat Offspring CA1 Neurons

Background: Facing environmental factors during early postnatal life, directly or indirectly via mother-infant relationships, profoundly affects the structure and function of the mammals’ Central Nervous System (CNS). Objectives: This study aimed to evaluate the effect of morphine consumption during the lactation period on short-term synaptic plasticity of the hippocampal Cornu Ammonis 1 (C...

متن کامل

Morphology and Synaptic Organization of Non-Dopaminergic Nigral Projections to the Medio Dorsal Thalamic Nucleus of the Rat, a Study by Anterograde Transport of PHA-L

Background: Mediodorsal (MD) thalamic nucleus, which is considered to take place between extra pyramidal and limbic feedback circuit, receives projective fibers from ventrolateral neurons of reticular part of substantia nigra (SNr). In order to better understand the influence and chemical reaction of these fibers upon MD nucleus, the morphology and synaptology of them were examined in the prese...

متن کامل

Activity-independent segregation of excitatory and inhibitory synaptic terminals in cultured hippocampal neurons.

Cultured hippocampal neurons were used as a model system to address experimentally the spatial and temporal sequence leading to the appropriate sorting of excitatory and inhibitory synaptic terminals to different cellular target domains and the role of neural activity in this process. By using antibodies against glutamic acid decarboxylase 65 (GAD65) and synaptophysin, we examined the developme...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Differential expression of synaptophysin and synaptoporin during pre- and postnatal development of the rat hippocampal network.

The closely related synaptic vesicle membrane proteins synaptophysin and synaptoporin are abundant in the hippocampal formation of the adult rat. But the prenatal hippocampal formation contains only synaptophysin, which is first detected at embryonic day 17 (E17) in perikarya and axons of the pyramidal neurons. At E21 synaptophysin immunoreactivity extends into the apical dendrites of these cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 9 10  شماره 

صفحات  -

تاریخ انتشار 1989